

DATE: 20/05/2012 IDEAL TEST SERIES MARKS: 30 STD: X SUBJECT: GEOMETRY (SOL) TIME: 1 HR

Ans.1.Solve any two

[2 M]

- (1) $\frac{A_1}{A_2} = \frac{b_1 \times h_1}{b_2 \times h_2}$ (Triangle with diff heights & diff bases) ($\frac{1}{2}$ M) $\therefore \frac{4}{5} = \frac{3}{2} \times \frac{h_1}{h_2}$ $\therefore \frac{h_1}{h_2} = \frac{4}{5} \times \frac{2}{3}$ $\therefore \frac{h_1}{h_2} = \frac{8}{15}$ (½ M)
- (2) Similar triangles are congruent triangles .It is a false statement.
- (3) By Geometric Mean definition

$$b^2 = a \times c$$
 (½ M)
 $\therefore (6)^2 = a \times c$
 $\therefore 36 = a \times c$
 $\therefore (1, 36) (36,1) (2,18) (18, 2) (4, 9) (9, 4) (3, 12) (12, 3) (½ M)$

Ans.2. Solve any three questions

[6 M]

(1) Let A_1 and A_2 be the areas of larger triangle and Smaller triangle with equal heights and corresponding bases b_1 and b_2 respectively. (½ M)

$$\therefore \frac{A_1}{A_2} = \frac{b_1}{b_2} \text{ (Triangles with equal heights)}$$

$$\therefore \frac{3}{2} = \frac{18}{x}$$

$$\therefore 3 \times x = 18 \times 2$$

$$\therefore x = \frac{18 \times 2}{3}$$

$$\therefore x = 12$$

- \therefore base of the smaller triangle is 12 cm. (1/2 M)
- (2) Δ ABC $\sim \Delta$ PQR (given) $\therefore \frac{A(\Delta \text{ ABC})}{A(\Delta \text{ PQR})} = \frac{AB^2}{PQ^2} \text{ (Areas of similar triangles theorem)}$ $\therefore \frac{A(\Delta \text{ ABC})}{A(\Delta \text{ PQR})} = \left(\frac{4}{6}\right)^2 = \frac{16}{36} = \frac{4}{9}$ (1 M)

(**3**) In **Δ** DEF

Seg PQ | Side EF (given)

- $\therefore \frac{DP}{PE} = \frac{DQ}{OF}$ (Basic proportionality theorem) (1 M)
- $\therefore \frac{DP}{7.2} = \frac{1.8}{5.4}$ Substitute the values

$$DP = \frac{1.8 \times 7.2}{5.4} = 2.4 \text{ units}$$
 (1 M)

(4) QR = 12

 \therefore QM = $\frac{1}{2}$ QR (M is a mid point of QR)

$$= \frac{1}{2} \times 12$$

= 6

In Δ PQR

PM is a median

∴
$$PQ^2 + PR^2 = 2PM^2 + 2QM^2$$
 (Apollonius principle)

(1 M)

$$(11)^2 + (17)^2 = 2PM^2 + 2(6)^2$$

$$121 + 289 = 2PM^2 + 72$$

$$410 - 75 = 2PM^2$$

$$\therefore 2PM^2 = 338$$

$$PM^2 = 169$$

Taking Sq root

$$PM = \sqrt{169} = 13 \text{ Units}$$

(1 M)

Ans.3. Solve any three

(1) Δ BCA $\sim \Delta$ BAD (Right angled a Similarity theorem) $\therefore \frac{BC}{RA} = \frac{BA}{RD}$ (Corresponding Sides are in proportion)

$$BA^2 = BC \times BD$$

(1 M)

 Δ ACD $\sim \Delta$ BAD (Right angled Δ Similarity Theorem)

 $\therefore \frac{CD}{AD} = \frac{AD}{BD}$ (Corresponding Sides are in proportion)

$$\therefore AD^2 = BD \times CD \tag{1 M}$$

 Δ BCA $\sim \Delta$ ACD (Right angle Δ Similarity theorem)

 $\therefore \frac{BC}{AC} = \frac{AC}{CD}$ (Corresponding Sides are in proportion)

$$\therefore AC^2 = BC \times CD$$

(1 M)

(2) Sides AB = 10 cmDiag AC = 16 cm

In a rhombus

Diagonals are perpendicular bisector of each other.

(1 M)

D

In \triangle AOB m \mid O = 90°

 $AB^2 = AO^2 + BO^2$ (pythagoras theorem)

$$(10)^2 = (8)^2 + BO^2$$

(1 M)

$$BD = 2 \times BO = 2 \times 6 = 12 \text{ cm}$$

Length of other diagonal is 12 cm.

(1 M)

- (3) (i) Δ ABC $\sim \Delta$ DEF (given)
 - (ii) $\therefore \frac{A(\Delta ABC)}{A(\Delta DEF)} = \frac{BC^2}{EF^2}$ (Areas of Similar triangles theorem) (1 M)
 - (iii) $\therefore \frac{9}{16} = \frac{BC^2}{EF^2}$

Taking Sq root

$$\frac{3}{4} = \frac{BC}{EF}$$

(1 M)

$$\therefore \frac{3}{4} = \frac{2.1}{EF}$$

 $3 \times EF = 4 \times 2.1$

$$EF = \frac{4 \times 2.1}{2}$$

 $EF = 4 \times 0.7 = 2.8$

$$\therefore$$
 EF = 2.8 cm

(1 M)

(4) In \triangle ABC Ray BD is the bisector of \lfloor ABC

 $\therefore \frac{AB}{BC} = \frac{AD}{DC} \text{ (angle bisector property of a triangle)} \qquad \text{(1 M)}$

$$\therefore \frac{25}{36} = \frac{12.5}{DC}$$

$$\therefore$$
 DC = $\frac{36 \times 12.5}{25}$ = 18 Unit

(1 M)

$$AC = AD + DC = 12.5 + 18 = 30.5$$

Perimeter of Δ ABC = AB + BC+ AC

$$= 25 + 36 + 30.5$$

(1 M)

Ans.4. Solve any two

[8 M]

(1) Statement:

If a line parallel to a side of a triangle intersect the other sides in two distinct points, then the line divides those sides in proportion (equal ratio)

Given In Δ ABC

Line PQ | Side BC

Intersect AB and AC at P and Q respectively

To prove : $\frac{AP}{PB} = \frac{AQ}{QC}$

Contruction Draw Seg BQ and Seg CP

	Proof Statement	Reason	
	Δ APQ and Δ BPQ both have common Vertex Q and their bases lie on Same line AB		
(1)	$\therefore \frac{A(\Delta \text{ APQ})}{A(\Delta \text{ BPQ})} = \frac{AP}{PB}$	(Triangles with equal heights) (1 M)	
	Δ APQ and Δ CPQ both have common Vertex P and their bases lie on Some Line AC		
(2)	$\therefore \frac{A(\Delta APQ)}{A(\Delta CPQ)} = \frac{AQ}{QC}$	(Triangles with equal heights) (1 M)	
	Δ BPQ and Δ CPQ both have Same base PQ and lie between two parallel lines PQ and BC ∴ Their heights are equal		
(3)	$:: A(\Delta BPQ) = A (\Delta CPQ)$	(Triangles with same base and equal height)	
(4)	$\therefore \frac{A(\Delta \text{ APQ})}{A(\Delta \text{ BPQ})} = \frac{A(\Delta \text{ APQ})}{A(\Delta \text{ CPQ})}$	(from 1, 2, 3)	
(5)	$\therefore \frac{AP}{PB} = \frac{AQ}{QC}$	(from 1, 2, 4)	
He	Hence Basic proportionately theorem is proved. (1 M)		

IDEAL / X /GEOMETRY (SOL)/ DT. 20 /05 / 2012

(2) Statement : In a right angled triangle square of the hypotenuse is equal to the sum of the Square of other two Sides.

Given

In
$$\triangle$$
 ABC m \mid B = 90°

To Prove

$$AC^2 = AB^2 + BC^2$$

Construction : Draw BD \perp Side AC

- Proof Statement Reasons
- (1) Δ ADB \sim Δ ABC Right angled Δ Similarity theorem
- (2) $\therefore \frac{AD}{AB} = \frac{AB}{AC}$ (Corresponding Sides are in Proportion)
- (3) $\therefore AB^2 = AC \times AD$ from 2 (1 M)
- (4) Δ BDC $\sim \Delta$ ABC (Right angled Δ Similarity theorem)
- (5) $\therefore \frac{DC}{BC} = \frac{BC}{AC}$ (Corresponding Sides are in proportion)
- (6) $\therefore BC^2 = AC \times DC$ from 5 (1 M)

Adding 3 and 6

- (7) $AB^2 + BC^2 = (AC \times AD) + (AC \times DC)$
- (8) $\therefore AB^2 + BC^2 = AC (AD+DC)$
- (9) $AB^2 + BC^2 = AC \times AC$
- (10) $AB^2 + BC^2 = AC^2$ (1 M)

Hence Pythagoras theorem proved

$$OB = (x - 3)$$

Seg AB | Seg CD (given)

(2) i.e \downarrow OAB $\equiv \downarrow$ OCD $\begin{pmatrix} C - O - A \\ A - O - C \end{pmatrix}$ (1 M)

In Δ AOB and Δ COD

- (3) $\bigcup OAB \cong \bigcup OCD$ from 2
- (4) $\lfloor AOB \cong \rfloor COD$ Vertically opposite angle
- (5) $\therefore \Delta AOB \sim \Delta COD$ (AA test of Similarity)

IDEAL / X /GEOMETRY (SOL)/ DT. 20 /05 / 2012

(6)
$$\therefore \frac{AO}{CO} = \frac{OB}{OD}$$

(Corresponding Sides are in proportion)

$$\therefore \frac{3x-19}{x-5} = \frac{x-3}{3}$$

$$3(3x-19)=(x-3)(x-5)$$

(1 M)

$$9x - 57 = x^2 - 8x + 15$$

$$x^2 - 17x + 72 = 0$$

$$(x - 8)(x - 9) = 0$$

$$\therefore$$
 x = 8 OR x = 9

(1 M)

Ans.5. Solve any one

(1)

In **Δ** PMR

PQ is a Median

 \therefore PM² + PR² = 2PQ² + 2QR² (Apollonius principle)

$$PM^2 + a^2 = 2a^2 + 2a^2$$

(1 M)

$$PM^2 = 4a^2 - a^2$$

$$\therefore PM^2 = 3a^2$$

Taking Sq root PM = $\sqrt{3}$ a

(1 M)

 Δ PQR is an equilateral / triangle

$$\therefore \Delta PTR is 30^{\circ} - 60^{\circ} - 90^{\circ}$$

$$\therefore PT = \frac{\sqrt{3}}{2} \times PR$$

(Side opp to 60°)

$$=\frac{\sqrt{3}\,a}{2}$$

TR = $\frac{1}{2}$ × PR (Side opp to 30°)

$$=\frac{1\times a}{2}$$

$$=\frac{a}{2}$$

(1 M)

IDEAL / X /GEOMETRY (SOL)/ DT. 20 /05 / 2012 TN = TR + RN = $\frac{a}{2}$ + a = $3^a/_2$

$$TN = TR + RN = \frac{a}{2} + a = 3^{a}/2$$

In \triangle PTN m \mid T = 90°

∴
$$PN^2 = PT^2 + TN^2$$
 (Pythagoras theorem) (1 M)

$$\therefore PN^2 = \left(\frac{\sqrt{3}a}{2}\right)^2 + \left(\frac{\sqrt{3}a}{2}\right)^2$$

$$\therefore PN^2 = \frac{3 a^2}{4} + \frac{9a^2}{4}$$

$$PN^2 = \frac{12a^2}{4}$$

$$PN^2 = 3a^2$$

Taking Sq root

$$PN = \sqrt{3} a$$

(1 M)

In \triangle ABN m \mid B = 90° (2)

- $AN^2 = AB^2 + BN^2$ (Pythagoras theorem) (1)
- ∴ $AN^2 = AB^2 + \left(\frac{1}{2}BC\right)^2$ (N is mid point of BC) (2)
- (3) $AN^2 = AB^2 + \frac{1}{2}BC^2$

Multiply both side by 4

(4)
$$4 \text{ AN}^2 = 4 \text{AB}^2 + \text{BC}^2$$
 (2 M)

In \triangle MBC m \mid B = 90°

- $CM^2 = BM^2 + BC^2$ (Pythagoras theorem) (5)
- (6) $CM^2 = \left(\frac{1}{2}AB\right)^2 + BC^2$ (M is mid point of AB)
- (7) $CM^2 = \frac{1}{4}AB^2 + BC^2$

Multiply both Side by 4

(8)
$$4CM^2 = AB^2 + 4BC^2$$
 (

Adding 4 and 8

(9)
$$4 \text{ AN}^2 + 4 \text{ CM}^2 = 5 \text{ AB}^2 + 5 \text{ BC}^2$$

(10)
$$4 (AN^2 + CM^2) = 5 (AB^2 + BC^2)$$

(11)
$$4 (AN^2 + CM^2) = 5 AC^2$$
 (1 M)

Hence Proved